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Abstract: The frequency of a magnetic field has led to the development of physicochemical
interaction models and to the consideration of the role of frequency as a fundamental
parameter in the change of cell behavior. The main objective of this article is to find a
frequency window to decrease the viability and proliferation of different tumor cell lines
to compare the frequency response of each. For this purpose, tumor cell lines PC12 (rat),
B16F10 (mouse), SKBR3 (human), MDA-MB-231 (human), and the non-tumor cell line 3T3
(mouse) are exposed to a magnetic field of 100 µT for 24, 48, and 72 hours in frequency
windows contained in the range [20–100] Hz, and their viability and proliferation behavior
is evaluated. The results show a frequency-, exposure-time-, and cell-line-dependent
behavior, with the most pronounced changes for most cell lines at frequencies of 45, 50,
and 55 Hz. It is concluded that each cell type could respond to specific frequency codes
that allow the modification of its behavior in vital cellular processes related to tumor
development. Knowledge of these codes would allow for the therapeutic application of
magnetic fields in oncological pathologies.
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1. Introduction
Cancer is a heterogeneous group of diseases at the molecular level in which cells

divide continuously and excessively [1]. Tumor cells have been one of the most widely
used biological models in bioelectromagnetism for two reasons. Firstly, there are numerous
studies related to the evaluation of exposure to extremely low frequency electromagnetic
fields (ELF-EMFs) at environmental or occupational levels with acute or chronic exposures
to determine whether cellular processes that induce tumor formation or growth are affected,
especially after the International Agency for Research in Cancer established ELF-EMFs in
category 2B as a possible carcinogenic agent [2]. Second, many research groups focus on
modulating the cellular response with the aim of reducing the proliferative capacity or
viability of tumor cells with potential therapeutic applications.

Numerous studies have pointed to EMFs as possible inducers of tumorigenic pro-
cesses at the cellular [3–7], animal [4,5,7,8], and individual level [4,9–13] for not spec-
ifying sufficient adaptation mechanisms to the introduction of a considerable amount
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of artificial electromagnetic fields [14]. The group of cells studied is always very
heterogeneous with breast cancer [15–26], osteosarcoma [27–30], leukemia or lym-
phoma [18,20,31–38], melanoma [15,39], gastric tumor or colon cancer [15,37,40–43], pan-
creatic cancer [18,43,44], prostate carcinoma [20,45], renal adenocarcinoma [46,47], cervical
cancer [45,48,49], or tumors related to the nervous system, such as gliomas and neuroblas-
tomas [18,26,30,44,50–53]. Most of these studies focus their results on cellular processes
involved in the appearance and increase in the number of tumor cells, such as viability
(defined as the ratio of live to dead cells in a population) [17,20,21,28,33,47], proliferation
(defined as the measure of the number of cell divisions in a population) [32,36,37,48], or
apoptosis (defined as programmed cell death by which damaged cells in a population are
eliminated) [16,17,20,23,33,37,47,49]. When the regulatory mechanisms of these processes
are altered, the tumor cell divides uncontrollably.

Since the 1980s, there have been numerous studies on the exposure of cellular models
to magnetic fields, although the reported effects have been varied and sometimes contra-
dictory, it has not been possible to establish a mechanism of interaction that can explain
them [54]. Frequency, as an exposure parameter, has been one of the main actuators in many
of the physical models related to resonance, such as Liboff’s cyclotron frequency [55–57], or
the ion parametric resonance model proposed by Lednev [58]. Ross Adey first introduced
the term “window” after three independent laboratories simultaneously found cellular
effects responding to a resonance mechanism at certain values of frequency and intensity
at which the biological response of the system was more pronounced than in the rest of the
frequency and amplitude range [59]. This was of great importance for the consideration of
frequency as the responsibility for biological responses observed in the experiment. Fre-
quency, intensity, and time windows can be grouped under the term “biological window”,
and are defined as a means by which electromagnetic fields interact with biological sys-
tems [60–63]. Despite the existence of results for in vitro models that suggest that frequency
plays a major role in the alteration of cellular processes, the exposure regulations governing
the limits to which the general population can be exposed are based on the “dose effect” or
“more is worse” criterion in which intensity is the main driver and frequency takes on a
mere secondary role [64].

The main objective of this research article is to find a specific frequency of a magnetic
field applied at continuous intensity that allows for the reduction of viability and prolif-
eration of different tumor cell models at different exposure times, for this purpose, these
cellular processes are studied by performing a search based on the criterion of “bioactive
window”. Furthermore, the results obtained are compared with those previously found in
the cells of nervous tissue [65] to determine whether the response is dependent on the cell
type used.

2. Materials and Methods
2.1. Cell Cultures

Cell lines from different species (human, rat, and mouse) and tissues (mammary,
kidney, skin, and connective) are used for comparative purposes in response to the same
magnetic field. Human HER2+ breast cancer cell lines SKBR3 (ATCC number: HTB-30)
and triple negative MDA-MB-231 (ATCC number: CRM-HTB-26) were obtained from
ATCC (American Type Culture Collection, LGC Standards, Teddington, UK). Adherent rat
pheochromocytoma (PC12 Adh), mouse fibroblast (3T3), and murine melanoma (B16F10)
cell lines were provided by the Instituto Cajal de Madrid belonging to the Consejo Superior
de Investigaciones Científicas (CSIC). The MDA-MB-231, B16F10, and 3T3 lines were
grown in a monolayer culture in Dulbecco’s modified Eagle medium with elevated glucose
(DMEM) (DDBiolab, w/L-Glutamine, without sodium pyruvate, cat. no. L0102-500),
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supplemented with 10% fetal bovine serum (DDBiolab, cat. no. P30-3302, Barcelona,
Spain), 1% L-Glutamine (DDBiolab, 200 mM, cat. no. P04-80100, Barcelona, Spain), and
1% penicillin/streptomycin (DDBiolab, penicillin 5000 Ul/mL, streptomycin 5, Barcelona,
Spain). The SKBR3 cell line was grown in monolayer culture in Roswell Park Memorial
Institute (RPMI) culture medium (DDBiolab, w/L-Glutamine, cat. no. L0500-500, Barcelona,
Spain), supplemented with 10% fetal bovine serum (DDBiolab, cat. no. P30-3302) and
1% penicillin/streptomycin (DDBiolab, penicillin 5000 Ul/mL, streptomycin 5, Barcelona,
Spain). The PC12 cell line was maintained in a monolayer culture in Dulbecco’s modified
Eagle medium with elevated glucose (DMEM) (DDBiolab, w/L-Glutamine, no sodium
pyruvate, cat. no. L0102-500, Barcelona, Spain), supplemented with 5% fetal bovine serum
(DDBiolab, cat. no. P30-3302, Barcelona, Spain), 10% donor horse serum (DDBiolab, cat. no.
S0900-500), 2mM L-glutamine (DDBiolab, 200 mM, cat. no. P04-80100, Barcelona, Spain),
25µG/mL gentamicin (DDBiolab, cat. no. L0011-010, Barcelona, Spain), and 2.5 µg/mL
amphotericin B (DDBiolab, cat. no. P06-01050, Barcelona, Spain). All cell lines were
cultured at 37 ◦C temperature under an atmosphere of 5% CO2 in air in Thermo Scientific
3111 series II incubators (Thermo Fisher Scientific Inc., Waltham, MA, USA). All cells used
in the experiment had a pass lower than 15. Cell subpopulations were prepared using the
cell passaging technique when the culture plates were close to 90% confluence.

2.2. Electromagnetic Field Exposure System

The exposure system used was specially designed at the Biolelectromagnetism Lab-
oratory of the Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, for
use inside cell culture incubators, with high homogeneity of the magnetic field applied on
the treated plate, as published previously (Figure 1) [66]. Briefly, two identical coils are
used, called RILZ coils, with a capsule shape consisting of two semicircles with a radius of
5 cm joined by two 10-cm-long straight lines. The separation between the coils is 3.5 cm
with a width of 7 cm in which the copper wires of AWG 18 are placed. Each of the coils has
222 turns of enameled copper. The coils are placed on plastic supports raised with respect
to the metal tray of the incubator to avoid the noise generated by the induction of the
magnetic field by direct contact with the grounded metal surface. The culture plates treated
with the magnetic field are placed in the center of plastic supports that ensure that they are
at the point of homogeneity of the system. The coil power electronics is also a proprietary
design of the complete coil system, consisting of a microprocessor that generates a square
signal. An LCD display shows the frequency and current values, and these are controlled
by precision potentiometers connected to an analog-to-digital converter (ADC) of the mi-
crocontroller. A current between 0 and 2 Amps is set through a power MOSFET feeding the
RILZ coils, and a current source controlled by the microcontroller. The frequency, between
DC and 200 Hz, is set using interrupts generated by the microcontroller’s internal timer.
Magnetic field measurements are made with the Lake Shore Model 480 fluxmeter (Lake
Shore Cryotronics, Westerville, OH, USA) and a Model MMZ-2502-UH triaxial probe (Lake
Shore, Cryotronics, OH, USA).). The absolute value of the pre-existing magnetic field in the
three space directions is from x (23.14 ± 0.39 µT), y (42.30 ± 1.19 µT), and z (5.96 ± 0.49 µT).

2.3. Exposure Conditions

The exposure conditions for each of the tests are shown in Table 1 and Figure 2.
For comparison purposes, the same exposure parameters as in a previous publication
evaluating the effect of the magnetic field on nerve tissue cell lines are used [65]. A fixed
intensity of 100 µT (exposure limit established by the recommendation 1999/519/EC in
Spain for a frequency of 50 Hz) is established [67]. The frequency is variable according
to the range explored, with a minimum value of 20 Hz and a maximum of 100 Hz. The
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exposure time is also variable, and experiments are carried out on viability for 24, 48, and
72 h, and the effects on proliferation are evaluated at 24 h. The applied waveform is square,
as described in the previous publications [65,66].
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Figure 1. Magnetic field generation system, RILZ coils, specifically designed, manufactured and
validated for cellular experiments.

Table 1. List of exposure parameters (intensity, frequency, and exposure time) and biological parame-
ters (cell line, biomarkers) used in each of the experiments presented.

Assay No. Cell Line Intensity [µT] Frequency [Hz] Exposure Time
[Hours] Biological Assay

1
PC12, SKBR3,
MDA-MB-231,

B16F10, 3T3
100 20, 40, 60, 80, 100 24, 48, 72 Metabolic activity

(MTT)

2
PC12, SKBR3,
MDA-MB-231,

B16F10, 3T3
100 30, 50 24, 48, 72 Metabolic activity

(MTT)

3
PC12, SKBR3,
MDA-MB-231,

B16F10, 3T3
100 45, 55 24, 48, 72 Metabolic activity

(MTT)

4
PC12, SKBR3,
MDA-MB-231,

B16F10, 3T3
100 45, 50, 55 24

Proliferation and
number of dead cells

(Trypan Blue)

5
PC12, SKBR3,
MDA-MB-231,

B16F10, 3T3
100 50 24 Viability/Apoptosis

(Calcein/EthD)

Before seeding the experiments, the homogeneity area provided by the system was
determined according to the plate used; a homogeneity value greater than 97% was main-
tained in all exposed samples [66]. For all experiments, seeding was performed 24 h
before exposure.

The controls are plates kept in the same conditions as the treated plates but with
the equipment turned off, so they are subject to the pre-existing magnetic field values
already described.
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Figure 2. Graphical representation of the study of different frequency windows. Assay 1 evaluates
the cell behavior in viability in a range of [20–100] Hz in 20 Hz ranges. In assay 2, the [20–60] Hz
range is studied by reducing the step to 10 Hz. In assay 3, the range is determined at [40–60] Hz in
5 Hz steps.

2.4. Metabolic Activity Assay

Cells are seeded in a 96-well plate at a final concentration of 60,000 cells/mL. The
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay (Biotium,
MTT Cell Viability Assay Kit, cat. no. 30006, Fremont, CA, USA) is used, following the
manufacturer’s instructions. Briefly, 10 µL of the MTT agent was added to each of the
tested wells and the plate was incubated in the dark for 4 h in the incubator at 37 ◦C. After
the time had elapsed, 200 µL of dimethyl sulfoxide (DMSO, Corning Media Tech, Cat. no.
15303671, New York, NY, USA) was added to each of the wells. They were resuspended to
dissolve the formazan salts.

The absorbance was measured using a HEALES model MB-580 microplate reader
(HEALES, Shenzhen, China) at wavelengths of 570 nm (MTT signal) and 630 nm (back-
ground signal). Each of the frequencies has a total of 10 replicates in 2 independent
experiments, including controls. The result of the subtraction of absorbances of each of the
replicates was ordered from lowest to highest for each of the frequencies, on the one hand,
and, on the other, for their respective control. The viability percentages are calculated as
follows according to the established increasing order:

Viability (%)i =
Abs570–630 nm (Expi)

Abs570–630 nm (Controli)

The percentage of viability will be represented as deviations of viability from the
control. They are calculated as follows:

Viability (%)j = Viability (%)i − 100%

Once the viability percentages were calculated, they were again ordered from lowest
to highest, and the highest and lowest values of each set were discarded in order to
homogenize the final percentages. These eight viability percentages are included in the
statistical software. The graphical representation of the results obtained from viability is
performed using the Prism 9 software (GraphPad Software, v.9.3.1., Boston, MA, USA).
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The experimental design can be observed in Figure 3.
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Figure 3. Experimental design for viability assays. First, cells are seeded, 24 h later cells are exposed
using the RILZ system. After 24, 48, and 72 h of exposure, the cell viability test (MTT) is performed.

2.5. Proliferation

Proliferation assays are performed using Trypan Blue staining agent (DDBiolab, cat. no.
P08-34100) and LUNA II automatic cell counter (Logos Biosystems, Anyang-si, Republic of
Korea). Cells were seeded in 60 mm diameter cell culture plates with a final concentration
of 300,000 cells/mL. Cells were harvested by the trypsinization technique. Briefly, after
the exposure time had elapsed, the culture medium was removed from the plate, washed
with 0.5 mL of 1X phosphate buffered saline PBS (DDBiolab, cat.no. SH30258.01), and
0.5 mL of 1X phosphate buffered saline PBS (DDBiolab, cat.no. SH30258.01) was added.
After removal, 0.5 mL of trypsin enzyme (Thermo Fisher Scientific Inc., cat.no.15090046)
was added and the plate was incubated at 37 ◦C for 5 min. After the time had elapsed,
1 mL of the culture medium was added to the plate and the contents were poured over
a 15 mL Falcon tube and centrifuged for 5 min at 1500 rpm and 21 ◦C. The supernatant
was removed and the cells were resuspended in 1 mL of the culture medium. An amount
of 10 µL of tube contents after resuspension and 10 µL of staining agent are removed and
mixed. Of the 20 µL of the mixture, 12 µL are used to load the counting chamber, which is
inserted into the automatic counter. The counter returns information on the number of live
and dead cells. The experiments are performed in triplicate in independent experiments.
Four samples are taken from each replicate and averaged. The graphical representation of
the results obtained from proliferation is performed using the Prism 9 software (GraphPad
Software, v.9.3.1., Boston, MA, USA). The percentages of cell proliferation are calculated for
each replicate (previously sorted) as follows:

Proli f eration (%)i =
Cells number (Expi)

Cells number (Controli)
× 100

The data are represented as a value of increase or decrease in proliferation as follows:

Proli f eration (%)j = Proli f eration (%)i − 100%

The experimental design can be observed in Figure 4.
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Figure 4. Experimental design for proliferation assays. First, cells are seeded, 24 h later cells are
exposed using the RILZ system. After the selected exposure time has elapsed, the cell proliferation
assay is performed using an automatic cell counter and the reagent trypan blue.

2.6. Apoptosis Assay

For apoptosis assays, the fluorescence Viability/Cytotoxicity Assay Kit for Animal
Live & Dead Cells (Biotium, cat.no. 30002, Fremont, CA, USA) is used, which stains
live cells green using Calcein AM and apoptotic cells red with EthD-III, following the
manufacturer’s specifications. Briefly, the culture medium is removed from each of the
samples tested. Add 2 µM Calcein AM and 4 µM EthD-III in sufficient volume to cover
the monolayer. Allow to stand for 30 min at room temperature in the dark. Fluorescence
is observed with a LEICA DFC340 FX microscope (Danaher, Washington, DC, USA) and
DFC Twain camera software (DFC Twain, v.6.9.0.107, Leica Microsystems, Heerbrugg,
Switzerland). The Calcein signal was visualized with the FITC filter set, and the EthD-III
signal was visualized with the Texas Red filter set. The images were analyzed with FiJi
software (ImageJ2, v.2.14.0, Madison, WI, USA).

The experimental design can be observed in Figure 5.
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performed using a fluorescence microscope.

2.7. Statistical Analysis

SPSS Statistics software (IBM SPSS Statistics© Software, v.29.0.0.0.0., New York, NY,
USA) is used for statistical analysis of the different assays. For viability assays, the values
of the 8 replicates are entered as a percentage of viability. In the case of proliferation assays,
the number of live cells and the number of dead cells from the 12 samples obtained by
frequency and controls are entered. The normality of the data is evaluated beforehand
with a 95% confidence interval. If the data show a normal distribution, the Student
statistical significance t-test is performed. If the samples have similar variance (Levene’s
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test, p > 0.05), the bilateral significance value is determined with the Student’s t-test for
equality of variances. If the samples do not have similar variance (Levene’s test, p < 0.05),
the bilateral significance value is read in the Student t-test for samples with non-similar
variances. If the samples have a nonnormal distribution, the nonparametric Mann–Whitney
U test is used.

3. Results
3.1. Viability

First, the 0–100 Hz frequency range is scanned at 20 Hz intervals during exposure
times of 24, 48, and 72 h. Figure 6 shows the graphs representing the viability percentages
obtained for each of the cell lines and the frequencies explored.
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Figure 6. Percentage of viability deviation obtained in the search of the first frequency window
[20–100] Hz of the different cell lines tested with respect to non-exposure controls: (A) rat pheochro-
mocytoma (PC12); (B) murine melanoma (B16F10); (C) HER2+ human breast cancer (SKBR3);
(D) triple negative human breast cancer (MDA-MB-231); (E) murine fibroblasts (3T3). All assays
are performed at a fixed intensity of 100 µT at 24, 48, and 72 h of exposure. Statistical results from
application of the Student t-test or the Mann–Whitney statistical U test with a 95%-CI according to
normality of the data: (*) p-value < 0.05; (**) p-value < 0.001; (n.s.) non-significant.
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In the first frequency range studied, it is observed that the pheochromocytoma cell
model (PC12) shows a bioactive window of decreased viability between 60 and 100 Hz,
centered at 80 Hz (24 h: −28.52 ± 5.51%; 48 h: −34.75 ± 1.61%; 72 h: −39.26 ± 1.19%;
p < 0.001) (Figure 6A). Furthermore, another bioactive window appears for the expo-
sure time at 24 h and 48 h, centered at 40 Hz (24 h: −21.05 ± 3.27%, p = 0.035; 48 h:
−27.34 ± 2.12%, p < 0.001). In the melanoma model (B16F10), the results of viability devia-
tion with respect to the controls obtained are highly dependent on the exposure time used
for a constant frequency (Figure 6B). In this case, exposure times of 72 h generally show
decreases in viability, with the greatest decrease being obtained at 40 Hz (−18.54 ± 1.44%;
p < 0.001). On the other hand, 24 h generally shows an increase in viability, with the greatest
increase at 20 Hz (41.25 ± 3.44%; p < 0.001). The SBR3 cell line shows a decrease in viability
at low frequencies, such as 20 Hz (24 h: −18.92 ± 4.19%; 48 h: −24.26 ± 0.91%; 72 h:
−15.17 ± 2.12%; p < 0.001), 40 Hz (24 h: −5.62 ± 3.07%, p = 0.001; 48 h: −12.57 ± 3.19%,
p < 0.001; 72 h: −12.72 ± 3.11%, p < 0.001), and 60 Hz (24 h: −6.70 ± 7.63%; 48 h:
−15.67 ± 1.74%; 72 h: −18.81 ± 4.09%; p < 0.001). However, its viability percentages
increase for 80 Hz (24 h: 12.19 ± 3.42%, p < 0.001; 72 h: 11.94 ± 7.08%, p = 0.005) and 100 Hz
(24 h: 11.74 ± 1.74%, p < 0.001; 72 h: 5.86 ± 4.15%, p = 0.005) (Figure 6C). In this case, the
behavior according to the exposure times used is similar according to the frequency used,
contrary to the response found in the melanoma model. In the triple negative breast tumor
cell model (MDA-MB−231), the exposure time of 72 h produces a generalized decrease in vi-
ability, being more pronounced at 20 Hz (−15.20 ± 1.43%; p < 0.001), 40 Hz (−14.11 ± 1.25%;
p < 0.001), and 100 Hz (−14.49 ± 2.27%; p = 0.002) (Figure 6D). Shorter exposure times,
such as 24 h, show a generalized increase in viability, being the highest for frequencies of
20 Hz (19.52 ± 2.29%; p < 0.001) and 40 Hz (20.97 ± 5.80%; p < 0.001). As in melanoma, the
results for the same frequency are highly dependent on the exposure time used. Finally,
the 3T3 cells show a valley of decreasing viability values centered at 40 Hz in which the
three exposure times converge to similar viability values (24 h: −29.79 ± 4.31%; 48 h:
−24.87 ± 4.18%; 72 h: −26.80 ± 2.67%; p < 0.001) and reach a maximum at the 60 Hz
frequency (72 h: 4.11 ± 1.33%; p < 0.001), with the opposite behavior between frequencies
(Figure 6E).

The 30 and 50 Hz frequencies for each of the cell lines are then incorporated (Figure 7).
In the pheochromocytoma cell model (PC12), it shows a decrease in viability compared to
controls for the three exposure times at 30 Hz (24 h: −28.53 ± 4.86%; 48 h: −23.93 ± 3.32%;
72 h: −27.78 ± 3.77%; p < 0.001) and 50 Hz (24 h: −27.69 ± 2.08%; 48 h: −23.69 ± 0.81%;
72 h: −30.88 ± 2.74%; p < 0.001) tracing two bioactive windows (Figure 7A). This also
happens in the breast tumor cell models, SKBR3 and MDA-MB−231. In the case of the
melanoma cells, 30 Hz (24 h: 13.52 ± 1.77%, 48 h: 29.87 ± 3.98%, 72 h: 25.45 ± 1.59%;
p < 0.001) produce an increase in viability over the controls. When exposed at 50 Hz, the
viability percentages converge for all three exposure times to a value above 20% (p < 0.001).
In the murine fibroblast cell model (3T3), both frequencies produce a decrease in viability,
without a defined trace of the bioactive window.

After incorporation of the 45 and 55 Hz frequencies (Figure 8), the pheochromocytoma
cell model further defines the bioactive window of decreased viability centered at 50 Hz.
In the melanoma (B16F10) and fibroblasts (3T3) cell models, the viability results obtained
at 45 and 55 Hz, do not show a new bioactive window, with values similar to the nearby
frequencies. In the case of the SKBR3 cells, the window is centered above 55 Hz (24 h:
−17.01 ± 1.29%; 48 h: −37.75 ± 1.46%; 72 h: −38.31 ± 4.69%; p < 0.001). In the breast tumor
model MDA-MB−231, it is centered at 45 Hz (24 h: −18.48 ± 3.70%; 48 h: −27.92 ± 5.19%;
72 h: −32.02 ± 7.92%). In the 3T3 cells, it is centered at 45 Hz, intermediate values to
those obtained for the frequencies of 40 and 50 Hz are obtained in 24 and 72 h (24 h:
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−25.93 ± 3.19%; 72 h: −19.71 ± 1.58%; p < 0.001), in the case of 48 h (−32.83 ± 2.62%,
p < 0.001), the minimum viability is reached for the frequencies studied.
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Figure 7. Percentage viability deviation obtained in the search of the second frequency window
[20–60] Hz of the different cell lines tested with respect to non-exposure controls. The 30 and 50 Hz
frequencies are incorporated: (A) rat pheochromocytoma (PC12); (B) murine melanoma (B16F10);
(C) HER2+ human breast cancer (SKBR3); (D) triple negative human breast cancer (MDA-MB-231);
(E) murine fibroblasts (3T3). All assays are performed at a fixed intensity of 100 µT at 24, 48, and 72 h
of exposure. Statistical results from application of the Student t-test or the Mann–Whitney statistical
U test with a 95%-CI according to normality of the data: (*) p-value < 0.05; (**) p-value < 0.001;
(n.s.) non-significant.

The results show the dependence of the cellular response in viability on the frequency
used, but also on the exposure time and the cell model used. It is shown how the time de-
pendence is less evident at some selected frequencies in which the viability value converges
independently of the exposure time used and some cell models.
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Figure 8. Percentage of viability obtained in the search of the third frequency window [40–60] Hz of
the different cell lines tested with respect to non-exposure controls. The 45 and 55 Hz frequencies are
incorporated: (A) rat pheochromocytoma (PC12); (B) murine melanoma (B16F10); (C) HER2+ human
breast cancer (SKBR3); (D) triple negative human breast cancer (MDA-MB-231); (E) murine fibroblasts
(3T3). All assays are performed at a fixed intensity of 100 µT at 24, 48, and 72 h of exposure. Statistical
results from application of the Student t-test or the Mann–Whitney statistical U test with a 95%-CI
according to normality of the data: (*) p-value < 0.05; (**) p-value < 0.001; (n.s.) non-significant.

3.2. Proliferation

Once the frequency window in viability was determined, it was decided to examine
the proliferative capacity of the cells at frequencies of 45, 50, and 55 Hz, as these are the
frequencies in which most of the cells obtain greater changes in the viability percentages.

The MDA-MB-231 cells show increases in proliferation with respect to the controls
for the three frequencies studied, 45 Hz (59.10 ± 3.90%; p < 0.001), 50 Hz (41.74 ± 8.27%;
p < 0.001), and 55 Hz (47.60 ± 3.82%; p < 0.001). This is similar for the melanoma cell
model (B16F10) although in this case, the increases are not as large as in the previous
cell model, 45 Hz (36.81 ± 3.40%; p < 0.001), 50 Hz (4.29 ± 2.36%; p = 0.046), and 55 Hz
(4.42 ± 2.37%; p = 0.042). In the case of the cells of the pheochromocytoma cell model
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(PC12), the results are highly dependent on the frequency applied, 45 Hz (−24.19 ± 0.43%;
p < 0.001), 50 Hz (−5.06 ± 0.46%; p = 0.06), and 55 Hz (3.37 ± 0.84%; p = 0.024), as is the
case for the non-tumor model of fibroblasts, 45 Hz (12.53 ± 8.14; p = 0.007) and 50 Hz
(−19.96 ± 2.81%; p = 0.007). The SKBR3 model shows a decrease in proliferation regardless
of the frequency used, 45 Hz (−11.05 ± 1.79%; p = 0.006), 50 Hz (−23.87 ± 5.35%; p < 0.001),
and 55 Hz (−28.26 ± 4.37%; p < 0.001).

In relation to dead cells, as seen in Figure 9B, at 45 Hz, the B16F10 cells (−36.52 ± 5.68%;
p = 0.001) and the pheochromocytoma cells (−22.27 ± 8.13%; p = 0.006) reduce statisti-
cally significantly. In the case of the 3T3 cells, this percentage increases compared to
controls (44.78 ± 18.28%; p = 0.005). At 50 Hz, the percentage of dead cells in melanoma
(48.15 ± 15.27%; p = 0.033) and MDA-MB-231 (56.94 ± 10.69%; p < 0.001) increase. This
percentage is statistically significantly reduced for the SKBR3 cells (−40.22 ± 4.38%;
p < 0.001). At 55 Hz none of the results is statistically significant.
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proliferation (Figure 10N), nor the number of dead cells (Figure 10O), the melanoma cell 
model shows statistically significant results for any of the frequencies evaluated. In the 
case of the MDA-MB-231 cells, it shows significant results of increased viability for the 
frequency of 45 Hz (p < 0.001), 50 Hz (p = 0.048), and 55 Hz (p = 0.016). It also shows 
significant results of increased cell proliferation at 45 Hz (p < 0.001). The number of dead 
cells is not affected (p = 0.06). In the case of the pheochromocytoma cells, it shows a single 
statistically significant value of increased viability at 45 Hz (p < 0.001), although this same 
frequency produces a decrease in cell proliferation (p = 0.004). It is the same frequency that 
shows a considerable increase in the number of dead cells in this same cell line (p = 0.029).  

Figure 9. (A) Percentage of proliferation of the different cell lines tested with respect to the non-
exposure controls. (B) Percentage of dead cells with respect to non-exposure controls. All tests are
performed at frequencies of 45, 50, and 55 Hz with a fixed intensity of 100 µT in 24 h of exposure.
Statistical results from application of the Student t-test or the Mann–Whitney U test with a 95%-CI
according to normality of the data: (*) p-value < 0.05; (**) p-value < 0.001; (n.s.) non-significant.

3.3. Apoptosis

Figure 10 shows the fluorescence results obtained. Neither in viability (Figure 10M),
proliferation (Figure 10N), nor the number of dead cells (Figure 10O), the melanoma cell
model shows statistically significant results for any of the frequencies evaluated. In the
case of the MDA-MB-231 cells, it shows significant results of increased viability for the
frequency of 45 Hz (p < 0.001), 50 Hz (p = 0.048), and 55 Hz (p = 0.016). It also shows
significant results of increased cell proliferation at 45 Hz (p < 0.001). The number of dead
cells is not affected (p = 0.06). In the case of the pheochromocytoma cells, it shows a single
statistically significant value of increased viability at 45 Hz (p < 0.001), although this same
frequency produces a decrease in cell proliferation (p = 0.004). It is the same frequency that
shows a considerable increase in the number of dead cells in this same cell line (p = 0.029).
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Figure 10. Apoptosis assay results at different frequencies of 45 Hz (B,F,J), 50 Hz (C,G,K) and 55 Hz
(D,H,L) for B16F10 (A–D), PC12 (E–H) and MDA-MB-231 (I–L) tumor cell line models. The results of
viability (M), proliferation (N) and dead cells (O). Statistical results from application of the Student
t-test or the Mann–Whitney statistical U test with a 95%-CI according to normality of the data: (*)
p-value < 0.05; (**) p-value < 0.001; (n.s.) non-significant.

4. Discussion
The main hypothesis of this work is that there is a specific frequency–frequency/intensity

combination (a code) of a magnetic field that allows for the reduction of the viability and
proliferation of a tumor cell model. Furthermore, as a secondary hypothesis to this first
one, it is established that these codes are dependent on the cell type used and, for this
reason, tumor cells from different tissues are used during the experimentation and will be
compared with the results obtained in a previous publication using tumor cells from tumor
(glioblastoma, neuroblastoma) and nontumor (astrocytes) nervous tissue [65].

The results show that cell viability and proliferation behavior depend on the frequency
and type of cells applied. However, in addition, they are also dependent on the exposure
time, which modifies the results in a way that depends on the duration of the applied
exposure. The 40–60 Hz frequency range causes, in melanoma cells, an increase or decrease
in viability depending on the exposure time applied, except for 50 Hz, where their behavior
converges to the same percentage for the three times used. In the PC12, SKBR3 and MDA-
MB-231 cells, the tendency of cell behavior is to decrease viability, although the frequencies
of 40, 55, and 60 Hz modify this behavior in a time-dependent manner. The fibroblast cell
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model shows a decrease in viability in the same frequency range. Therefore, it is shown that
the cell behavior of the same cell lineage is dependent on the frequency/time combination
in what is known as the “biological window model”.

Numerous researchers have studied frequency as a possible cause of resonance effects
in the cell that could determine the responses found [68–78]. However, the tendency of
many authors is to use a specific frequency and not a wide range of frequencies in cell
experimentation, which allows this parameter to be considered unimportant, and its role
in the experimental design to be relegated to second place [64]. This also occurs because,
for years, the intentionality parameter has been considered as the sole cause of cellular
effects derived from exposure to magnetic fields, inherited from the translation of the study
of ionizing radiation to non-ionizing radiation [59]. The cell was then understood as an
energy detector, in which only sufficiently high amounts of energy could cause cellular
effects. Nevertheless, there are many publications showing cellular alterations resulting
from exposure to weak ELF-EMFs [69,79–83].

The frequencies of 50 Hz [24,25,28,33,41–45,47,84–100] and 60 Hz [28,48,101–107] are
usually the frequencies of preference when designing experiments, because they are those
frequencies used in the electrical distribution network throughout the world. In this study,
the frequency of 50 Hz is of great importance because, in practically all cell lines used,
the most important results of decreased or increased viability and/or proliferation were
obtained, coinciding with the previous publication [65].

The existence of codes in biology is not new. A code can be defined as “a correspon-
dence between objects in two independent worlds that is implemented by objects in a third
world called adapters” [108]. The existence of a multitude of codes has been determined
in biology [108]. The best known is the genetic code, but it is not unique; many other
organic codes have been found to exist in living systems, such as the metabolic code [109],
sequence codes [110–112], the histone code [113–117], the sugar code [118], or the tubulin
code [119–122]. Our hypothesis holds that a specific combination of exposure parameters
made up of specific values of frequency and time, which form a code, manages to acti-
vate the cell. This code would function as a key that opens a lock understood as cellular
structures, making the cell response to the stimulus take the form of a window, altering its
behavior in basic cellular processes (viability, proliferation) when this response is maximal
(Figure 11). In other words, only certain ranges of parameters would cause the cell to
respond. Knowing these specific combinations would allow researchers to manipulate
this cell behavior as desired. An obvious example would be the therapeutic application
of magnetic fields. This biological window behavior has been widely reported in other
published studies [59,69,80–82,123–127].

The question that arises is: what is the most decisive parameter in the cellular response?
This question does not seem to be easy to answer. With respect to the results obtained, it
could be concluded that there is no single determining parameter that alone achieves the
desired effects in all cell lines. Perhaps the solution is not to think of one parameter as the
conductor of the orchestra, but rather a combination of these parameters that is specific to
each cell type. We would understand this combination of parameters as a code that the cell
receives and sets in motion the different mechanisms of action.

It is known that biological systems, in this case, cellular systems, are systems with
non-linear responses. In addition, the cell membrane is a good electrical insulator (ε ≈ 6),
which has led to the idea that the most important component in the interaction between
magnetic fields and cells is the magnetic one [123,125,126,128,129]. It has been determined
that, in the presence of a magnetic field, the cell undergoes alterations at the micro- and
macromolecular level. The site of occurrence of the cellular effects in the first instance
could be the cell membrane [123,125,126,128,129]. The cell, through its cell membrane,
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communicates intracellularly and extracellularly through ion currents that respond in most
cases to the presence of an electric current. Therefore, it is determined that the cell has
a double function: as a sensor, to detect the differences in the chemical gradient and the
electrical currents generated; as an effector, to transmit the electrical and chemical signals
to the rest of the cells [54,77,125]. It is not difficult to think that an external magnetic
field could alter the cellular environment and cause modifications in its vital processes,
such as viability and proliferation. It has been established that there are three main ways
in which magnetic fields interact with living systems: energy, matter, and information
transfer [59,81]. Cells of any multicellular organism require, in order to develop vital
functions such as growth and division, constant communication between them, based on
signaling molecules that, in excitable cells, combine with bioelectrical phenomena [77].
Communication phenomena are basically membrane phenomena that are produced by
transduction complexes (specific receptor proteins, transducer proteins, enzymes) that
amplify the weak signal that is promoted by the binding of signaling molecules to their
specific receptors on the extracellular side of the cell membrane [125]. As a consequence,
effector molecules are generated at the cytosolic level (second messenger) that induce
various metabolic changes [54]. Many studies support the idea that ELF-EMFs could
interact directly with proteins and transducer and receptor enzymes of the cell membrane
and produce an amplification of the outer signal [130–138].
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Figure 11. Hypothesis of interaction of the magnetic field and a cell. The cell receives the magnetic
field stimulus as an encoding of exposure parameters that is in a bioactive range for a given cellular
process. The first site of interaction is the cell membrane, where signal amplification occurs, resulting
in a transfer of energy, matter, and information. This alters the cellular process through interaction
with specific molecules of the cell signaling cascades. This leads to alteration of the basic cellular
processes of viability and proliferation.

The interaction of magnetic fields and cell membrane proteins is mainly due to elec-
tronic polarization, reorientation of dipole groups, and changes in the concentrations of
charged species in the vicinity of charges and dipoles [54]. Biological systems are complex
and inhomogeneous, with ionic and dielectric properties that are difficult to predict [54,125].
Membranes do not maintain the same composition in different cells, which makes it diffi-
cult to determine the biological effects of a given magnetic field exposure, since they will
depend strongly on the shape and composition of the surface and the presence/absence of



Biomolecules 2025, 15, 503 16 of 24

charged or dipolar groups [54]. Three characteristics of the interaction process between an
ELF-EMF and the cell membrane have been proposed to be of particular importance for am-
plification of the effects [54]: nonlinearity or non-equilibrium [125,126,139,140], cooperative
processes [1], and resonance [54,141]. Resonance is directly related to frequency.

The bioactive window hypothesis states that interactions between living systems and
the magnetic field involve information transfer, with discrete levels of amplitude and
frequency that cause the effects observed experimentally, and can trigger biochemical
processes, ion binding, and signal transduction [60,69,79,80,82,83,123,125,127,142]. The
only way to justify the existence of these windows is to assume that biological systems
are not linear [59,68,69,80–82,126,139]. Considering that there are windows of frequency,
time, and intensity also leads the authors to determine that different electromagnetic fields
applied to different tissues may cause different effects [123–125,143]. That is, the same EMF
applied to different cell types may cause different effects, and the same cell type may or
may not be affected by several EMFs, with similar or totally opposite effects.

Although there is no interaction model to explain the cellular effects found, the results
allow us to think of possible therapeutic applications in which there is a “window of oppor-
tunity” or “therapeutic window”, as that combination of exposure parameters that could
alter a pathological process through a therapeutic action [124]. In addition, it is stated that
exposure to magnetic fields in an out-of-equilibrium system, in a pathological state, could
be more effective than those applied to systems in equilibrium or healthy controls [124].
The signaling pathways and molecules involved in cell viability and proliferation processes
are of great importance in the pathological development of tumor processes. Knowing the
specific code that allows us to decrease the levels of one molecule or another, and stop cell
proliferation, for example, in a tumor model, is of great clinical relevance. As has been
observed in the results presented, cells from tumor models show different response to
nontumor models. Tumor cells seem to be more sensitive to the magnetic field, and this
is explained by the modifications they present in the signaling pathways of cell prolifera-
tion and viability [3,4,144]. Calcium pumps and channels are usually modified in tumor
cells [1,145]. These cells overexpress specific calcium channels that activate pathways, such
as PI3K/Akt, Ras/MAPK, and NFAT, that promote cell proliferation and also regulate the
action of cyclins and cyclin kinases causing cells to proliferate uncontrollably [145–147].
It also plays a key role in cell migration and invasion, so that, in tumors such as breast,
prostate, and colon tumors, channels, such as TRP (Transient Receptor Potential), are over-
expressed, increasing calcium concentration, and thus activating actin cytoskeletons and
favoring cell migration and invasion [87]. Furthermore, it also regulates angiogenic factors,
such as VEGF (vascular endothelial growth factor), which promotes the formation of new
blood vessels. In tumor cells, there is also an accumulation of calcium in mitochondria that
blocks apoptosis by modifying the Bcl-2 proteins [145,148]. ROS also regulate PI3K/Akt
and Ras/MAPK pathways, favoring cell proliferation and migration, as well as activating
apoptosis evasion pathways through Bcl-2 and acting on factors, such as NF-kB and HIF-
1α, that favor angiogenesis, invasion, and cell viability [149]. These differential aspects of
tumor cells versus non-tumor cells make it possible to think that a magnetic field with a
given combination of exposure parameters can be applied to act differently on pathological
cells versus non-pathological cells. The magnetic field could alter the second messengers
of signaling pathways responsible for cell proliferation and viability, for example, by in-
creasing Bcl-2 expression to promote tumor cell apoptosis, modulating the behavior of
calcium channels, or regulating mitochondrial activity and ROS concentrations [4,7,150].
However, the magnetic field itself could also act as a second messenger by altering cell
signaling pathways, just as all other chemical molecules do. Also, the effects on non-tumor
cells, such as fibroblasts in this case, are very important for tumor development. In this
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case, the fibroblast cell model obtained mostly decreased viability results. These results are
particularly important. Since fibroblasts are responsible in the tumor microenvironment
for promoting proliferation, migration, and invasion of cancerous tumor cells, they secrete
growth factors and cytokines that promote angiogenesis and modify the extracellular ma-
trix facilitating metastasis, so being able to target their response with specific bioactive
codes is also of great importance for the role they play in relation to tumor cells [151]. On
the other side, finding a bioactive code that would increase their viability and proliferation
could be very useful in the therapeutic application of magnetic fields in pathologies related
to cellular aging and collagen loss. Deciphering the coded response combinations for the
reduction of tumor cell proliferation and viability would open the way for the therapeutic
application of the magnetic field, alone or in combination with traditional therapies, such
as pharmacological, offering a non-invasive and targeted therapeutic alternative according
to the type of tumor and patient treated.

Limitations

The main limitation of this work is that there is no physico-mathematical mechanism
to explain the results of ELF-EMF exposure in cellular models, so the search for explanations
of the cellular results must be based on hypotheses.

The range of values of the exposure parameters are infinite, so a selection of these had
to be made. The values that can be adopted by exposure parameters, such as frequency and
exposure time, are infinite. In this research a selection of these has been made on the basis
of the results that were previously published in [64–66]. This does not mean that parameter
values that have not been explored cannot obtain better results or results totally different
from those presented in this work. The final objective of the experimentation was to show
the implication of the frequency in the cellular response in viability and proliferation,
and the experimental design has been sufficient for this; however, larger ranges of these
parameters could be explored in the future, in order to obtain patterns of cellular behavior
based on the values of the magnetic field exposure parameters.

Cellular assays are performed mainly on some immortalized cell lines that are models
of different tumors, so they are not derived directly from patient tumors or animal models,
i.e., they are not primary cells. Primary cells have the advantage of originating directly
from the tissue or organ under study and behave similarly to the tissue of origin. However,
they have a very limited capacity for division and, therefore, they would not be optimal
for the study of viability and proliferation processes. Their maintenance in culture is
complex. Although their characteristics allow for a more precise physiological study, they
are not ideal for large-scale or repetitive experiments. It could be expected that the behavior
between an immortalized cell line and a primary cell line in the face of the same magnetic
field would vary from the results presented.

The in vitro results allow for an approach to the problem, and are adequate for the
study of the hypotheses raised in this research. However, they do not allow us to analyze
the hypotheses presented in cells inserted in their natural physiological environment,
disregarding the homeostatic compensatory mechanisms that could modify some of the
behaviors observed in the results.

The cellular processes studied (viability, proliferation) show global results of the
alteration of the final product of this process; however, with the results obtained, it is only
possible to hypothesize about the alteration of the secondary molecules involved in the
process, and how the ELF-EMFs alter their normal processes. The results are presented in a
global form, and studies that analyze the molecular level in depth would be necessary to
give a more detailed explanation of the effects that ELF-EMFs cause in cells.
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5. Conclusions
It has been demonstrated that there are certain frequencies that can reduce the pro-

liferation and viability of different tumor cell models. The cellular effects found depend
largely on the frequency used, but also on the exposure time and the cell line used. The
presented results seem to confirm the hypothesis that there is a specific combination of
cell type-dependent parameters that allow the alteration of cell viability and proliferation
processes. The cell could be understood as a sensor capable of discriminating between
different magnetic fields. This is of great utility for future therapeutic applications.
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